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Conjecture and proof are the twin pillars of mathemat-
ics. . . . The concept of proof . . . brings something to 
mathematics that is missing from the other sciences . . . 
mathematicians have ways to build a logical argument 
that pins the label of “true” or “false” on practically 
any conjecture.

—Peterson 1988, pp. 217–18

O
ne method of proof is to provide a logical 
argument that demonstrates the existence 
of a mathematical object (e.g., a number) 
that can be used to prove or disprove a 

conjecture or statement. Some such proofs result in 
the actual identification of such an object, whereas 
others just demonstrate that such an object exists. 
These types of proofs are often referred to as 
constructive and nonconstructive, respectively.

Copyright © 2015 The National Council of Teachers of Mathematics, Inc.  www.nctm.org. All rights reserved.
This material may not be copied or distributed electronically or in any other format without written permission from NCTM.



CONSTRUCTIVE AND NONCONSTRUCTIVE  NONCONSTRUCTIVE 
Proof

Vol. 108, No. 6 • February 2015 | MATHEMATICS TEACHER  423

SE
R

G
IO

 S
C

H
N

IT
Z

LE
R

/T
H

IN
K

ST
O

C
K

In this article, we share four tasks that we use to 
encourage secondary school students and preservice 
mathematics teachers to consider the conditions 
under which an example or counterexample, or even 
the logical demonstration that an example exists, can 
serve as a proof. We have regularly observed that 
students and others working through these tasks 
expand their approaches to proving statements and 
solving nonroutine mathematical problems.

The use of these tasks supports NCTM’s Rea-
soning and Proof Standard for Grades 9–12, which 
includes recognizing reasoning and proof as funda-
mental aspects of mathematics; making and inves-
tigating mathematical conjectures; developing and 
evaluating mathematical arguments and proofs; and 
selecting and using various types of reasoning and 
methods of proof (NCTM 2000, p. 342). Also sup-
ported are aspects of the Number and Operations, 
Algebra, and Data Analysis and Probability, and Con-
nections Standards. Moreover, we have found that 
solvers engaging in these tasks use several Standards 
for Mathematical Practice (SMPs) from the Common 
Core State Standards for Mathematics, particularly 
making sense of problems and persevering in solving 
them; reasoning abstractly and quantitatively; and 
constructing viable arguments and critiquing the rea-
soning of others (CCSSI 2010, pp. 6–8).

These four tasks can be classified into two types 
on the basis of how they can be resolved. Tasks 1 and 
2 can be resolved by finding or constructing a specific 
example or counterexample that proves the given 
statement, whereas tasks 3 and 4 can be resolved by 
showing that an example or counterexample must 
exist, even if it is not constructed. We ask readers to 
try resolving these tasks before reading the solutions. 
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Engaging with the tasks will give a better apprecia-
tion for the various solution strategies. 

CONSTRUCTIVE-PROOF TASKS
Statements can be proved or disproved with an 
example. 

Task 1: Batting Averages and 
Simpson’s Paradox
This task may be stated as follows: 

 Consider two baseball players, A and B. In the 
first half of the season, player A’s batting aver-
age was higher than player B’s batting average. 
During the second half of the season, player 
A’s batting average was higher than player B’s 
(again). Prove or disprove that for the entire 
season player B’s batting average can be higher 
than that of player A. (Note: A batting average is 
calculated by dividing the number of hits by the 
number of at-bats; walks are excluded.)

This task involves a well-known statistical phe-
nomenon, Simpson’s paradox, which may not be 
novel to teachers but is not always introduced in 
secondary school mathematics curricula. The para-
dox sometimes arises when dealing with aggregate 
rate data or weighted averages, the latter of which 
is a standard topic in algebra courses and is usually 
addressed with mixture tasks, motion activities, 
and grade-point-average calculations. 

Secondary school students are intrigued by the 
counterintuitive nature of this task. Most, at first, 
believe that it is not possible for player B to have 
the higher batting average, but many also feel that 
the task would be too easy if that were the case. 
Some solvers try to prove algebraically that it is 
not possible, often failing to consider the nature of 
batting averages. For example, figure 1 shows the 
work of a preservice teacher who attempted to use 
a proof-by-contradiction argument but incorrectly 
summed ratios as fractions.

However, students who understand that play-
ers’ batting averages are ratios search for at least 
one combination of hits and at-bats to prove that 
the scenario is possible. These solvers realize that 
the half-season batting averages cannot all be based 

on the same number of at-bats; thus some have 
more weight than others in the whole-season aver-
ages. By cleverly manipulating the number of hits 
in relation to at-bats, they find appropriate batting 
averages to show that player B can have the higher 
full-season batting average, as is seen in a student’s 
solution using this approach (see fig. 2). 

This high school junior’s first reaction to the task 
was, “They can’t have the same number of at-bats.” 
When asked why not, she replied, “Sometimes if I 
went 6 for 10, a teammate would say she hit better 
by going 2 for 3 because it’s a higher average . . . you 
really can’t compare those because you don’t always 
go 2 for 3.” When asked why she used 5 at-bats for 
batter A in the first half but 25 at-bats in the second 
half, this student explained, “I wanted to make [bat-
ter A’s] first average go down a little. The 2 hits in 
5 at-bats in the first half didn’t do too much . . . they 
aren’t strong enough compared to 25 at-bats.” Then 
she added, “The 200 at-bats [for batter B] have 
more weight.” From her experience as a softball 
player, this student had a feel for how weighting 
can affect overall batting averages, and she used this 
understanding in constructing her example. When 
debriefed about how she combined the batting aver-
ages for the season, she said, “This is not like adding 
fractions . . . you are adding totals for hits and totals 
for at bats, then dividing.” 

Figure 3 shows the work of a preservice teacher 
who first showed that “typical math” does not 
work here and then gave a combination of averages 
that solved the problem.

Students and preservice teachers provide and 
explain a range of solutions, and we ask them 
to describe common features of their solutions. 
This task generates class discussion pertaining to 
the meanings of fractions and ratios, the idea of 
weighted averages, and the nonintuitive context of 
the situation. This task supports NCTM’s Number 

“No, this is not possible. Let players A and B’s batting averages for 
the first half of the season be denoted A1 and B1, respectively, and for 
the second half of the season, denote the averages as A2 and B2. So we 
know that A1 > B1 and A2 > B2. The problem asks, Is it possible for B1 + 
B2 > A1 + A2? Consider: B1 + B2 > A1 + A2 > A1 + B2, because A2 > B2, so 
B1 > A1. This is a contradiction; we know already that B1 < A1. So we 
have showed via contradiction that this is not possible.” 

Fig. 1  A preservice teacher’s argument shows incorrect reasoning. Fig. 2  A high school student offers a solution by example.
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and Operations Standard, which states that stu-
dents should be able to “judge the reasonableness of 
numerical computations and their results” (NCTM 
2000, p. 393). As the student work suggests, judg-
ing the reasonableness of computations and results 
is critical to resolving this proof. Likewise, three 
Common Core SMPs (CCSSI 2010) are embodied in 
the students’ perseverance in solving the problem, 
reasoning through the “nonstandard” operations 
needed to calculate the batting averages, and their 
ability to justify their conclusions and communi-
cate them to others.

Note that Simpson’s paradox can be observed 
with actual data, as shown in the batting statistics 
for Derek Jeter and David Justice during the 1995 
and 1996 baseball seasons (Ross 2004, pp. 12–13) 
(see table 1). In both 1995 and 1996, Justice had a 
higher batting average than Jeter, but when the two 
baseball seasons are combined, Jeter has a higher 
batting average than Justice.

Task 2: The Designing Dice Problem
Task 2 is worded as a question, but it can also 
be posed as a proof task. As a question, it can be 
answered by constructing an appropriate example. 
The task is stated as follows:

 If there are no restrictions on the numbers you 
can place on a pair of cube-shaped dice, is it 
possible to create a pair of dice such that you 
can roll all sums from 1 through 12—and only 
those sums—with equal probability?

We have given this task to middle school, high 
school, and undergraduate students and often get 
similar reactions. Some quickly respond that it is 
not possible to roll a sum of 1; these students have 
not kept in mind the condition “no restrictions on 
the numbers” on the dice and are still tied to the 
idea of standard dice. Others are stymied by the 
“equal probability” condition. Some initially try a 
few number combinations haphazardly, while others 
approach the task more systematically by resorting 
to their understanding of outcomes, sample spaces, 
and probability. These latter students realize that if 
there are 12 possible sums with 36 possible ways to 
get them, there must be 3 ways to get each sum.

Figure 4 shows the work of a preservice teacher 
who used this thinking to construct an example. 
This teacher wrote the numbers as they might 
appear on a pair of dice. Most students write simi-
lar examples either in set notation, as the three 
shown in figure 5a, or in a chart, as the two 
shown in figure 5b. 

Although a few students initially do not think 
that creating such a pair of dice is possible, most 
of them eventually find at least one set of numbers 

“ . . . in baseball batting averages, you do not add fractions as you 
would in typical math:

Typical math: 
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It doesn’t make sense that someone could get 7 hits when he has only 
been up to bat 6 times.

Baseball math: 
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In baseball math, you only need to add numerators and denominators 
straight across. Think of this logically. If [players] came to bat twice 
during the first half of the season and 3 times in the second half of the 
season, then they came up for a total of 5 times for the entire season. 
Using this notion, we can come up with a way to solve this problem.

Player A Player B

First Half 3 hits/9 at-bats > 3 hits/10 at-bats

Second Half 1 hit/1 at-bat > 7 hits/10 at-bats

Whole Season 4 hits/10 at-bats < 10 hits/20 at-bats

. . . In the end, player A had a total batting average of .4, which is less 
than that for player B, who had a batting average of .5.”

Fig. 4  One preservice teacher constructs a proof of the 
Dice task.

Fig. 3  A preservice teacher correctly uses an example as proof of existence.

Table 1 Data from 1995 and 1996 MLB Seasons That 
Demonstrate Simpson’s Paradox

1995 1996 Combined 

Derek Jeter 12/48 = .250 183/582 = .314 195/630 = .310

David Justice 104/411 = .253 45/140 = .321 149/551 = .270
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that satisfy the task conditions and answer the 
question in the affirmative. Once several solutions 
are shared publicly, students see that all their solu-
tions involve two numbers each appearing three 
times on a die, and they realize that there are an 
infinite number of possible dice that satisfy the 
conditions. Students connect solutions and obser-
vations to the definitions of probability and the 
notion of sample space, either while finding exam-
ples or after observing those found by others.

This task offers a unique way of addressing 
NCTM’s Data Analysis and Probability Standard 
on two levels. Specifically, this Standard states that 
students should be able to “understand the concepts 
of sample space and probability distribution and 
construct sample spaces and distributions in simple 
cases” (the first level) and that students should 
“understand how to compute the probability of a 
compound event” (the second level) (NCTM 2000, 
p. 401). Further, when making connections among 
solutions, observations, and mathematical defini-
tions, students “recognize and use connections 
among mathematical ideas” (NCTM 2000, p. 402), 
which is a cornerstone of the Connections Standard. 
This task also allows middle school students to 
“investigate chance processes and develop, use, and 
evaluate probability models” (CCSSI 2010, 7.SP.C, 
p. 50) while also engaging them in the SMPs. 

NONCONSTRUCTIVE-PROOF TASKS 
These statements can be proved by demonstrating 
that an example or counterexample exists. 

Task 3: Prove or Disprove: An 
Irrational Number Raised to an 
Irrational Power Can Be Rational.
At first glance, students often believe that this 
statement cannot be proven true. It is not until they 

consider familiar irrational numbers that solvers 
reconsider their initial reactions. This task helps 
students engage in number theory concepts in a 
unique way. One common pitfall for some stu-
dents is failure to demonstrate or even state that 
the numbers they are using in their solutions are 
in fact irrational. This is a critical step in proving 
the statement and a significant practice in writing 
proofs. For example, the student whose work is 
shown in figure 6 never even considered that his 
demonstration requires him to show that 1212 is 
itself irrational before raising it to an exponent.

Some solvers who are not completely certain 
about the irrationality of the number 1212 realize
that they do not need to do so. If they can use this 
number to show that there exists at least one ratio-
nal number that can be written as an irrational 
number raised to an irrational power, then the 
statement is proved. For example, the preservice 
teacher whose work is shown in figure 7 used the 
same numbers as the student whose work is shown 
in figure 6, but the logic was very different.

This approach, shown in figure 7, considers 
two cases. Case A (which starts in the left column 
of work and ends with the top line of the right col-
umn) assumes that 1212 is a rational number and 
thus demonstrates the conjecture. Case B, on the 
other hand, assumes that 1212 is irrational. In this 
case, raising it to the irrational power 12 leads to 
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“At this point, I started looking at more proper-
ties of exponents and started looking at this one:
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I tried using the square root of 2 first and deter-
mined the following:
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Here it is important to realize that
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Thus,
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Therefore, we see an example of when an irra-
tional number raised to an irrational number is 
rational under one specific circumstance.”

Fig. 6  A proof attempt demonstrates a common fl aw.

 (a) (b)

Fig. 5  Two students work to resolve the Dice task. 
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to 150,000, doubled 125,000 “to be sure,” and rea-
soned that after one person was found with a hair 
count for each of the numbers from 0 to 250,000, 
there would still be 7,750,000 New Yorkers with a 
hair count equal to a number already used.

Similarly, figure 9 shows the work of a preservice 
teacher who first stated that, on average, humans 
have 100,000 hairs but “to be safe assume [that] the 
maximum number of hairs would be 350,000 or 
even 1,000,000.” She then argued that if one tried 
to sort the more than 8 million people in New York 
City into different “hair number” categories (pigeon-
holes), based on the number of hairs on their heads, 
after a million people were put into unique catego-
ries, the other 7 million would need to be placed in at 
least one of the already-taken categories.

This is another example of a nonconstructive 
proof: Two people with the same number of hairs 
on their heads are not identified, but it is logically 

Fig. 7  A preservice teacher considers two cases in a nonconstructive proof.

Hence, case B also shows an irrational number 
raised to an irrational power equaling a rational 
number (i.e., the number 2). Only one of these cases 
must be correct, but the preservice teacher did not 
say which of the two is correct. However, doing so is 
not necessary to prove the given statement; this logi-
cal argument demonstrates that at least one example 
of an irrational number to an irrational power equal-
ing a rational number exists. Because neither case 
and, hence, neither example is identified as the cor-
rect one, this proof is considered nonconstructive. 

This task extends the Common Core Standards 
of Mathematical Content (SMCs) and concerns the 
meaning of rational exponents (i.e., HSN-RN.A.1) 
and understanding the sums and products of rational 
and irrational numbers (i.e., HSN-RN.B.3), by giving 
students an occasion to engage in the SMPs address-
ing problem solving, reasoning, and constructing and 
critiquing arguments (i.e., SMPs 1, 2, and 3). More-
over, the nature of this task gives students an oppor-
tunity to “develop an appreciation of mathematical 
justification” and requires that “their standards for 
accepting explanations should become more strin-
gent” (NCTM 2000, p. 342). NCTM recommends 
that as students progress through high school, their 
level of sophistication with regard to proof increases.

Task 4: Prove or Disprove: In New York City, 
There Are at Least Two People with the 
Same Number of Hairs on Their Heads. 
We usually present this task orally and often pause 
after the first three words, to which students 
respond with a combination of groans, sighs, and 
“Oh no.” Then, after we get past a number of pro-
posed trivial solutions, such as “Mr. Clean and 
Kojak,” students usually start looking for informa-
tion on the population of New York City and infor-
mation on the average or typical number of hairs 
on human heads. Some use their found information 
to argue that there must be some people with the 
same number of hairs on their heads in New York 
City because the number of people in the city (e.g., 
8,244,910) is so much larger than the typical number 
of hairs (or hair follicles) on heads (between 100,000 
and 150,000). Most students respond that this is not 
a proof, but many of them also believe that it is a 
reasonable and almost convincing argument.

Other students use their found information to 
make a similar argument, but one based on the 
“pigeonhole” principle, which many have not 
formally learned in any mathematics course. For 
example, the high school student’s work shown 
in figure 8 suggests thinking consistent with an 
understanding of the pigeonhole principle.

This student assumed there are 8 million people 
in New York, found estimates for the typical number 
of hairs on a human head that ranged from 100,000 

Fig. 8  A student’s solution echoes the pigeonhole principle.

Fig. 9  A preservice teacher’s work leads to a pigeonhole 
proof.
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demonstrated that under the given conditions, they 
must exist. Indeed, a high school student remarked, 
“I know it’s the case even though I didn’t count the 
hairs on every person’s head.”

NCTM’s Reasoning and Proof Standard states: 
“The repertoire of proof techniques that students 
understand and use should expand through the 
high school years” (NCTM 2000, p. 345). Task 4 
provides students an opportunity to learn a proof 
strategy that may not be found in a typical high 
school textbook, a beneficial experience for them 
when conjecturing and justifying in unfamiliar 
mathematical situations. 

PURPOSEFUL PRACTICE AND 
THE POWER OF PROOF
There are several points to keep in mind when 
using these tasks. Although they can be used to 
help students develop the ability to prove con-
jectures, if not used cautiously tasks can lead to 
misconceptions about proof by example. Teach-
ers must be careful to help students see that an 
example does not and cannot prove many types of 
conjectures. Students need to thoroughly analyze 
statements and conjectures to be proved or dis-
proved, carefully considering the meaning and sig-
nificance of pivotal words such as is, can, will be, 
always, all, and so forth. Learning to judiciously 
analyze tasks like these will help students with 
other aspects of doing mathematics and other sub-
jects as well.

Also, these tasks can be modified to meet teach-
ers’ specific goals and the needs of particular stu-
dents. If you want your students to practice writing 
formal mathematical proofs, have them write up 
their arguments as such; however, if you want your 
students to practice mathematical critical think-
ing, ask them to brainstorm arguments and discuss 
them in pairs or small groups. In addition, present 
these tasks with various wordings, such as “Prove 
or disprove,” “Is this possible?” “Explain when,” or 
even “Find a case in which this works” (to simplify 
the tasks by restricting the outcomes).

Davis and Hersh argued that the purpose of  
generating a proof in mathematics has been for 
“validation and certification” (1981, p. 149) but 
added that a proof “increases understanding by 
revealing the heart of the matter . . . proof is math-
ematical power . . .” (p. 151). Indeed, the Common 
Core recognizes learning how to construct and 
evaluate proofs as an important component of a 
student’s mathematical development: 

�Mathematically proficient students . . . make con-
jectures and build a logical progression of state-
ments to explore the truth of their conjectures. 
They are able to analyze situations by break-

ing them into cases, and can recognize and use 
counterexamples. They justify their conclusions, 
communicate them to others, and respond to the 
arguments of others. . . . Mathematically proficient 
students are also able to compare the effectiveness 
of two plausible arguments, distinguish correct 
logic or reasoning from that which is flawed, and—
if there is a flaw in an argument—explain what it 
is. (CCSSI 2010, pp. 6–7)

Thoughtful use of the tasks presented here can 
help students develop mathematical power and 
proficiency.
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